Varför flyger flygplan?

Inledning — den klassiska förklaringen

(Note: at the top of the page you can choose translation of this article to other languages, but don't expect the translation to be perfect — "Välj språk" means "Choose language")

Den klassiska förklaringen (enligt skolans läroböcker och de flesta flygprogram på TV etc) till en vinges lyftkraft är följande:

En vingens översida är välvd och dess undersida är rak (eller i varje fall mindre välvd än översidan). Luften som följer översidan har därför längre väg att gå och kommer av denna anledning att röra sig med högre fart. Enligt Bernouillis lag (ekvation (1) nedan) är summan av det statiska trycket (själva lufttrycket) och det dynamiska trycket (trycket på grund av fartvinden) konstant, vilket har att göra med att summan av potentiell och kinetisk energi, enligt energiprincipen, är konstant. Eftersom farten hos luftströmmen över vingen är högre än luftens fart under vingen, kommer det dynamiska trycket på vingens översida att vara högre än på vingens undersida. Enligt Bernoullis lag blir då det statiska trycket på vingens översida lägre än motsvarande tryck på undersidan (om det dynamiska trycket ökar måste det statiska trycket minska och vice versa, eftersom deras summa är konstant). Således får vi en uppåtriktad nettokraft på vingen, som så att säga sugs uppåt. Detta är, enligt skolans fysikböcker, populärvetenskapliga artiklar och tv-program om flyg och alltför många läroböcker för piloter etc, hela förklaringen till lyftkraften hos en vinge.

Orsaken till att luften över vingen har högre fart än luften under vingen, är enligt denna modell att den luft som går längs den mer krökta ovansidan har längre sträcka att tillryggalägga och därför måste röra sig fortare. Detta grundas i tanken att de luftmolekyler som skiljs åt vid vingens framkant (en del molekyler går över vingen och andra under) kommer fram till vingens bakkant samtidigt (ungefär som att de stämt möte där). Detta brukar kallas equal transit time (lika transiteringstid), fortsättningsvis kallad ETT. Det finns emellertid inga fysikaliska eller aerodynamiska skäl till att ETT skulle gälla, tvärtom så har men i vindeltunnelförsök visat att ETT inte gäller. Detta kommer att diskuteras mer i detalj längre fram i denna text. Fortsättningsvis kallar jag denna (som vi strax skall se) felaktiga modell av lyftkraftsgenerering för ETT-modellen.


Bild 1. Figuren illustrerar den klassiska förklaringen till lyftkraften hos en vinge (EQT-modellen).

På senare tid har denna förklaring alltmer börjat ifrågasättas. En bidragande förklaring till detta har säkert varit att man efter WW2 började använda andra vingprofiler än den klassiska. Viss moderna vingprofiler har samma krökning på både ovan- och undersidan (laminära). Medan andra till och med har större krökning på undersidan (superkritiska).

Jag läste vid ett tillfälle om en pojke som inte riktigt var nöjd med ovanstående. Under en fysiklektion, när läraren hade förklarat hur en vinge fungerar, räckte pojken upp handen och sade att han inte trodde att det stämde. Läraren förklarade en gång till med uppbjudande av alla sina kunskaper i pedagogik. Pojken sade att han i alla fall inte trodde att läraren hade rätt. Läraren blev nu arg och menade att pojken inte hade förstått eller inte ville förstå. Och så bad han pojken att ge ett skäl till varför han inte trodde på lärarens förklaring. Pojken var tydligen ganska smart eftersom han sade, "Magistern kan ju i så fall förklara hur det kan komma sig att flygplan kan flyga upp och ned — då borde ju planet sugas nedåt på grund av att den krökta ytan på vingen är vänd nedåt". Läraren blev givetvis helt svarslös och eftersom det var på den gamla goda tiden, när vuxna alltid hade rätt (även när de hade fel), släpade han med pojken till rektorn och det hela slutade med att pojken fick sitta kvar för att han varit uppkäftig. Men sanningen är inte lika lätt att trycka ned. För eller senare poppar den upp. Under de senaste tio åren har många läroböcker reviderats, så att de nu innehåller den korrekta förklaringen (eller i varje fall en mer korrekt förklaring än tidigare).

Man kan således fråga sig varför luften ovanför vingen måste röra sig snabbare än luften under vingen. Visserligen är det på en klassisk vingprofil längre väg längs vingens översida än längs undersidan på grund av den övre vingytans krökning, men vad är det som säger att de luftmolekyler som "skiljs åt" på vingens framkant (en del går under vingen, andra över) måste anlända samtidigt till vingens bakkant? Har kvävemolekylerna Vera och Kurt stämt möte där, månne? Bernoullis lag är bara tillämplig om vi har en fartskillnad mellan luftströmningen över och under vingen och lagen själv bevisar inte att så är fallet.
För att Bernoullis lag skall kunna tillämpas, måste det således finnas någon ytterligare faktor i verksamhet som ger en fartskillnad hos luften mellan vingens över- och undersida. Både vindtunnelförsök och teoretiska beräkningar visar att luften på översidan av en klassisk vingprofil faktiskt rör sig snabbare än på undersidan. Problemet är att den rör sig betydligt snabbare än vad som krävs för att kompensera för den längre sträckan på ovansidan (orsakad av den större krökningen). Förklaringen till detta ges nedan i avsnittet "Bernoulli i nytt ljus".

 

Den verkliga förklaringen

Vad är då förklaringen till att flygplan flyger? Ja, som så ofta, så är det både enkelt och komplicerat. Det enklaste och mest grundläggande och mest intuitiva och mest korrekta sättet att förklara lyftkraft är att hänvisa till att alla vingar skyfflar (accelererar) luft nedåt. Dels genom vingens form men framför allt genom att vingen är vinklad i förhållande till flygkroppen och att man dessutom ofta flyger med högt nosläge (man har en viss s k "anfallsvinkel" — se bild 4 nedan), och dessutom höjer nosen ytterligare när man vill ha extra lyftkraft, t ex då man vid landning vill ha låg fart men ändå tillräcklig lyftkraft. Läsaren har kanske lagt märke till att när jetplan landar så har de ofta hög anfallsvinkel, dvs ett högt nosläge (det är uppförsbacke för flygvärdinnorna när de i sista minuten drar tillbaka sina vagnar — om de är på väg framåt i planet) — se bild 7 nedan.


Bild 2. Genom vingens anfallsvinkel riktas luftströmmen på vingens undersida delvis nedåt. Man skyfflar således stora mängder luft nedåt. Även vingens form på ovansidan kan bidraga till att accelerera luft nedåt.
Mer generellt kan man uttrycka det på följande sätt: Vingar och andra ytor som skapar lyftkraft påverkar luftflödet med en kraft så att luftflödets riktning ändras. Enligt lagen om verkan och motverkan kommer då luftflödet att påverkar vingen etc med en lika stor och motriktad kraft. Om vingen styr luftflödet nedåt kommer således luftflödet att påverkar vingen med en uppåtriktad kraft (se bild 2 ovan).

När vingen riktar luftströmmen på under- och översidan nedåt, innebär detta att man accelererar luft nedåt, dvs planet påverkar luften med en kraft nedåt. Enligt Newtons tredje lag om verkan och motverkan (aktion och reaktion), så påverkar alltid två objekt varandra med lika stora och motriktade krafter. Eftersom planet påverkar luftmassan med en nedåtriktad kraft, så påverkar luftmassan planet med en lika stor, uppåtriktad kraft. Ju mer luft som skyfflas nedåt, desto större lyftkraft. Ökar man anfallsvinkeln genom att t ex höja planets nos, skyfflar man mer luft nedåt, och lyftkraften ökar därmed (samtidigt ökar givetvis luftmotståndet och vid alltför stor anfallsvinkel riskerar planet att störta, eftersom motorerna inte längre klarar av att övervinna luftmotståndet).

 

Stall, anfallsvinkel och några andra viktiga begrepp


Bild 3. Övre bilden visar en vingprofil med ganska hög anfallsvinkel (som t ex kan vara fallet strax efter takeoff), men med i huvudsak laminär strömning (vilket innebär att luftströmmen följer vingens form). Vi ser lite turbulens på bakre delen av vingen. Undre bilden visar en vinge som stallat (uttalas "stålat"). Stall (på svenska säger man "vikning") innebär att farten gått ned, anfallsvinkeln är extrem (ligger på gränsen till eller över den s k "kritiska anfallsvinkeln" — se bildtexten till bild 5) och vingen har tappat det mesta av sin lyftkraft. Det laminära flödet på vingovansidan har upphört och ersatts av turbulent flöde. Planet börjar nu sjunka igenom allt snabbare.
När man närmar sig stall räcker det inte med hög anfallsvinkel för att hålla planet flygande. Eftersom farten på grund av det stora luftmotståndet från vingen (och givetvis också från flygkroppen och den horisontella stabilisatorn) sjunker, skyfflas till slut inte tillräckligt med luft nedåt för att kunna bära planets vikt (en stillastående vinge skyfflar ingen luft nedåt oavsett hur stor anfallsvinkeln är). Allt eftersom farten går ner sjunker därför planet allt snabbare. Luftmotståndet ökar och blir till slut så stort att motorerna inte räcker till för att öka farten och ta sig ur stallen. Den låga farten gör också att höjdroderverkan blir otillräcklig för att få ner nosen (turbulens vid stabilisatorn gör dessutom höjdrodret verkningslöst). För att öka chansen att ta sig ur en stall konstrueras därför flygplan så att vingarna stallar före stabilisatorn (de små horisontella vingarna i stjärten, där också höjdrodret sitter). Eftersom vingarna tappar lyftkraften före stabilisatorn, kommer nosen automatiskt att sjunka när man stallar plus att höjdrodret fortfarande verkar. På så sätt underlättas urgången ur stallen.
Tar man sig inte ur stallen snabbt så kommer planet att störta. Urgång ur stall görs således genom att man sänker planets nos och ökar motordragkraften. Under urgången tappar man höjd. Hur mycket beror på hur snabbt piloterna reagerar, plantyp, motorstyrka etc. Befinner man sig på hög höjd hinner man normalt ta sig ur stallen, men på låg höjd (i samband med start och landning) går kanske inte detta. Begynnande stall är en mycket farlig situation och alla flygplan idag har s k stallvarnare, som varnar när man börjar närma sig stallhastigheten. Urgång ur stall övas under pilotutbildning och de regelbundna träningspass som yrkespiloter genomgår. En hel del flygolyckor har orsakats av att piloterna blivit distraherade av något och inte observerat att farten av någon anledning sjunkit mot farligt låga värden.
Den läsare som vill veta mer om förhållandet mellan lyftkraft och luftmotstånd kan klicka här.

Bild 4. Bilden är avsedd att klargöra begreppet anfallsvinkel (angle of attack = AoA på engelska). För att förenkla utgår vi från att det är vindstilla (still air). Pitch vector (kallas ibland "bore sight") är nosens riktning (dit planet pekar). Velocity vector (hastighetsvektor), också kallad "flight path vector", är den riktning som planet rör sig (vilket sällan är den riktning dit nosen pekar — vid landning med jetplan är ju pitch vector riktad något uppåt samtidigt som velocity vector är riktad nedåt ca 3°, som är den normala glidbanevinkeln, dvs nosen uppåt och planet sjunker, vilket tydligt illustreras i bild 7). Pitch angle (PA) är vinkeln mellan planets nos (pitch vector) och horisonten (horizon) — kallas ibland nose up (denna vinkel presenteras på ett av de viktigaste flyginstrumenten, gyrohorisonten). Flight path angle (FPA) är vinkeln mellan velocity vector (vilken visar planets rörelse genom luften) och horisonten, Vid planflygning är denna givetvis noll (den är ju ett mått på planets rörelse och vid planflykt flyger planet parallellt med horisonten). Vid start är det denna vinkel (FPA) som planet stiger med, dvs som avgör om man klarar omkringliggande terräng (är vinkeln för låg kanske man flyger in i terränghinder). Och slutligen Angle of attack (AoA), dvs anfallsvinkeln, är vinkeln mellan pitch vector och velocity vector, dvs vinkeln mellan nosen och planets rörelseriktning (här talar vi således inte om vingens anfallsvinkel utan om planets/flygkroppens). Matematiskt gäller då att: AoA=PA-FPA. När trafikplan startar känns det som att man stiger betydligt brantare än vad man i själva verket gör. Det beror på att det man som passagerare upplever är pitch angle (nosens vinkel i förhållande till horisonten), vilken således inte är den vinkel planet stiger med. Angle of attack, omedelbart efter start, kan vara 12° när det gäller trafikplan. Om vi antar att flight path angle är 6° (dvs planet stiger med 6°), blir pitch angle 6°+12°=18°, dvs man upplever (även utifrån ser det så ut) som att planet stiger väldigt brant (12° mer än vad det i verkligheten stiger med). Men större delen av planets lutning beror således inte på stigningen utan på att man har stor AoA. Man kan ha stor AoA och ändå ha ett lågt nosläge (under horisonten), eftersom AoA inte relaterar till horisonten utan till planets rörelseriktning (hur luften strömmar mot planet). Vid planflykt (dvs på cruise) har de flesta passagerarplan en pitch angle på mellan några grader och 5°, bl a beroende på hur vingarna är vinklade i förhållande till flygkroppen. Här är PA och AoA samma sak, eftersom FPA är lika med noll.
Sammanfattningsvis; om farten minskar måste man öka anfallsvinkeln om man vill bibehålla lyftkraften. Detta kan man göra ända tills man kommer till den gräns då planet stallar (se bild 3 och 5).

Bild 5. Grafen ovan visar sambandet mellan en vinges anfallsvinkel (AoA) och dess lyftkraftskoefficient (CL). Den senare beror också på vingens form (vingprofilen). Lyftkraften är proportionell mot denna koefficient (och också proportionell mot vingens area och det dynamiska trycket på vingen — det senare beror på vingens fart genom luften och luftens densitet — se ekvation (2) nedan). Vi ser att lyftkraftskoefficienten (och därmed lyftkraften) ökar i det närmaste linjärt med AoA inom området för "normala" anfallsvinklar (Normal flight envelope). Ett bevis så gott som något för att accelerera luft nedåt är avgörande för en vinges lyftkraft.
När man passerar kurvans maximum, kommer man in på stallområdet. Anfallsvinkeln är således en väldigt tydlig och exakt parameter när det gäller att avgöra hur nära stall man ligger. I min detaljerade genomgång av Primary Flight Display-instrumentet (länk nedan) diskuteras indikerad fart (IAS=Indicated Air Speed), vilken är den fart som presenteras på ett flygplans fartmätare (jag hänvisar läsaren dit för närmare detaljer). Ett flygplans IAS mäts med ett s k "pitotrör" ("pitot" uttalas "pitåå" med tonvikt på sista stavelsen), vilket helt enkelt mäter farttrycket (ungefär som om man håller ut handen genom ett bilfönster — klicka här för en kort förklaring av pitotrör). IAS är inte lika med den verkliga farten, annat än vid havsytan (vid normalt lufttryck 1013 hPa och temperaturen 15° Celsius). Ju tunnare luft (dvs ju högre man flyger, ju varmare det är och ju lägre det lokala lufttrycket är) desto lägre är IAS jämfört med den verkliga farten (TAS=True Air Speed). På cruise kan IAS vara 240 knop samtidigt som TAS är 450 knop (vid 40 000 ft höjd). Ju högre man flyger ju tunnare blir luften (densiteten minskar) och desto fortare måste man flyga för att få samma lyftkraft (lyftkraften är ju, som vi nyss konstaterat, proportionell mot bl a luftens densitet). Fördelen med IAS är att denna fart är direkt relaterad till farttrycket och därmed till luftens densitet. Dvs uttryckt i IAS är stall speed densamma oavsett flyghöjd. Det är därför denna fart, och inte verklig fart, anges på fartmätaren. Stall speed beror givetvis på flygplanstypen och även på hur tungt ett plan är (last, bränsle, eventuell isbildning etc) och hur vingen är konfigurerad (slats och klaffar, vilka ändrar både form och storlek på en vinge — se bild 23). AoA har den stora fördelen att den anger närheten till stall oavsett hur tungt planet är. Och avsett luftens densitet (dvs oavsett höjd, lokalt lufttryck och temperatur). Och utgör därför en oerhört viktig faktor när man startar och landar (då man ligger nära stall speed). Skulle planet av någon anledning vara tyngre än beräknat (t ex beroende på att någon har slarvat och att vissa containrar är tyngre än vad som är angivet på lastmanifestet) riskerar man att stalla om man enbart tar hänsyn till IAS. Men AoA går inte att lura. Håller man sig inom tillåtna anfallsvinklar kommer inte planet att stalla. Punkt slut! Därför har många moderna trafikplan AoA-mätare som direkt visar anfallsvinkeln. När en F-18 (se bild 17) landar på ett hangarfartyg tittar man överhuvudtaget inte på fartmätaren, utan flyger helt och hållet på AoA-instrumentet (vid landning på hangarfartyg balanserar man verkligen på gränsen till stall, eftersom man vill ha så låg fart som möjligt pga den extremt korta banan — ca 100 m!). Läs mer om detta här!

Den som vill fördjupa sin förståelse av pitch angle, AoA etc, rekommenderas att läsa följande korta artikel jag skrivit. Där visar jag hur dessa olika parametrar presenteras för piloten på den s k Primary Flight Display (PFD), vilken är det absolut viktigaste instrumentet i en modern cockpit (numera säger man ofta flight deck i stället för cockpit).

Att trafikplan (som flyger fort, dvs jetplan) under cruise (själva transportsträckan) oftast flyger med något nos upp beror på att flygkroppen då kommer att bidra till den totala lyftkraften (den skyfflar ju luft nedåt i detta fall). Genom att flygkroppen bidrar till lyftkraften kan vingarna göras mindre. Givetvis skulle man kunna ändra vingarnas vinkel i förhållande till flygkroppen så att flygkroppen var horisontell på cruise. Vilket man således normalt inte gör. Det handlar om att väga olika faktorer mot varandra. MD-11 (se bild 7) var känd för sitt speciellt höga nosläge. Något som kabinpersonalen inte uppskattade när de skulle dra sina vagnar framåt i planet (MD-11 är inte så vanlig som passagerarplan idag, men desto vanligare som fraktplan). Alla jetflygplan har dock inte nose up under planflykt. Det amerikanska bombplanet B-52, som fortfarande utgör en viktig del av USA:s försvar, flyger ibland (beroende på hur tungt planet är lastat) med nose down på cruise. Detta beror på hur vingarna är vinklade i förhållande till flygkroppen. Varför man valt att göra så vet jag inte, men det finns säkert någon smart tanke bakom. Idag flygs f ö dessa plan av barnbarn till de första piloterna som flög planet — B-52 gjorde sin första flygning 1952 och man räknar med att planet kommer att flyga i kanske 50 år till (räknat från 2016). Då kommer B-52 att ha varit i aktiv tjänst i 114 år!!! Så konstruktionen tycks ju inte vara alltför misslyckad.

Bild 6. En MD-80 i SAS färger under climb. Observera hur små vingarna är! Men flyger man bara tillräckligt fort gå det bra med små vingar (speciellt när också flygkroppen bidrar till lyftkraften). Observera också hur långt bak vingarna sitter! Detta är för att balansera vikten av motorerna, vilka sitter längst bak. SAS var länge en av världens största operatörer av MD-80 och dess föregångare DC-9 (i ca 50 år). Numera är dessa legendariska plan utfasade ur SAS flotta (sedan oktober 2013).

Långsamma propellerplan (både små privatplan och commuters som flyger korta sträckor) har sällan nos up under själva flygningen och de har ofta låg nos när de flyger in för landning. Detta beror på att deras vingkonfiguration (vingprofil och i vilken vinkel vingarna monterats på flygkroppen) är optimerad för lägre farter. Precis innan man sätter ned ett propellerplan lyfter man nosen (kallas "flare" eller att man "planar ut") och drar ner motorerna på tomgång för att få en mjuk landning på huvudstället (man vill ju inte landa på noshjulet av uppenbara skäl). Även jetplan lyfter ofta nosen lite grand när de skall "sätta sig" (trots att de redan har nose up), men vissa stora trafikplan, t ex Boeing 747, behöver knappast göra en flare, eftersom de skyfflar en enorm luftkudde under och framför sig, vilken dämpar landningen (Boeing 747 anses vara mycket lätt att göra mjuka landningar med — den landar nästan sig själv kan man säga). Flygplan designade för höga farter har vingar som är förhållandevis små och tunna (se bild 6 ovan) för att ge lågt luftmotstånd (drag). Den höga farten gör att man ändå får tillräcklig lyftkraft under cruise (trots att man normalt flyger på hög höjd, där luften är tunn).

Jetplan flyger ofta långa sträckor med hög fart och på hög höjd och då har man prioriterat designen i relation till detta, medan propellerplan är designade för att flyga på betydligt lägre höjder och i betydligt lägre farter och kortare sträckor (där den lägre farten inte betyder så mycket). När ett jetplan flyger långsamt inför en landning måste man därför, till skillnad från ett propellerplan, kompensera för planets högfartsoptimering genom att öka anfallsvinkeln och accelerera extra mycket luft nedåt (plus att ha väldigt komplicerade system av flaps och slats — dessa diskuteras i den följande texten, se också bild 23).

En mycket viktig faktor när det gäller flygplan är stabilitet, vilken är kopplad till lyftkraft och tyngdpunkt. Läs mer om detta här!

Och här förklaras fysiken och tekniken när flygplan svänger (plus att viktiga, och alltför ofta missuppfattade, fysikaliska begrepp som centripetal- och centrifugalkraft förklaras): klicka här!

 

Några exempel

Låt mig ge några exempel som illustrerar anfallsvinkelns betydelse för lyftkraften:

Bild 7. En MD-11 (fraktversionen) strax före landning. Man ser tydligt det höga nosläget och de fullt utfällda klaffarna på vingens bakkant, allt för att skyffla (accelerera) så mycket luft som möjligt nedåt. Trots att planet är på väg ner (sjunker) är således nosen riktad något uppåt (ca 6°) för att ge vingarna en högre anfallsvinkel (och därmed öka lyftkraften). På vingens framkant ser man slats utfällda. Dessa bidrar till goda lågfartsegenskaper, bl a genom att motverka turbulens på vingens översida (se bild 23 för förklaring).
En ytterligare fördel med klaff är att man får mindre nose up jämfört med utan klaff (vid samma fart) och därmed bättre sikt vid landning (jämför med bild 12).

Bild 8. US Navy hade under många år ett mycket speciellt jaktplan, Vought (tillverkaren) F-8 Crusader (bilden visar planet strax före katapultstart från ett hangarfartyg). På grund av den långa stjärten kunde man inte ha tillräcklig anfallsvinkel vid start och landning (stjärten skulle då slå i marken). För att lösa problemet vinklade man i stället upp vingarna (7°) med en inbyggd domkraft, vilket framgår ovan (puckeln på ryggen). I stället för att höja nosen och därmed hela flygkroppen 7°, ökade man således enbart vingens vinkel med 7°. Detta gav också piloten mycket bättre sikt vid landning, där många plan har högt nosläge. Under normal flygning vinklade man ned vingarna och puckeln försvann. F-8 var ett utomordentligt jaktplan och under Vietnamkriget var nordvietnameserna livrädda för detta plan. Det påstås att om nordvietnameserna fick reda på att Crusaders var i farten flög de hem och landade. De ville inte ge sig i kast med en så svår motståndare. Crusadern hade den tämligen unika egenskapen att kunna flyga med yttervingarna infällda (på hangarfartyg fäller man in stora delar av vingen för att planen skall ta mindre plats), vilket flera piloter upptäckte efter att de av misstag startat utan att fälla ut vingarna. De lyckades till och med landa planet, även om de klagade på att det var aningen svårmanövrerat. Att F-8 Crusader gick att manövrera med infällda yttervingar berodde på att skevrodren fanns på den inre delen av vingen (Crusadern hade kombinerade klaffar och skevroder, s k flaperons).

Bild 9. Chance Vought F7U Cutlass var ett amerikanskt hangarfartygsbaserat jakt/bombplan, som började konstrueras 1946. Planets design innehöll en uppsjö av nya, revolutionerade idéer, som avvek från traditionell design. En del av dessa idéer visade sig dessvärre vara mindre lyckade (en understatement). 280 st byggdes men planet togs ur drift ganska snart efter att ha råkat ut för mängder av haverier med många omkomna piloter (25 procent av alla tillverkade Cutlass förstördes vid olyckor). Notera det groteskt långa noshjulsstället! Det var ungefär samma tanke som när det gäller F-8 Crusader (föregående bild), dvs att öka den initiala anfallsvinkeln. Nosstället hos Cutlass gav en hög anfallsvinkel redan från början (eftersom flygkroppen var kort kunde man, till skillnad från Crusader, öka anfallsvinkeln genom att vinkla upp flygkroppen), vilket underlättar start från ett hangarfartyg (med tanke på den korta banlängden). Jämför med texten under bild 20.

Bild 10. En Cessna Citation (en business jet) har just passerat över ett moln och nedsvepet från vingarna har skapat en "dalgång" genom molnet. Man ser också virvlarna från vingspetsvortexen (läs om "winglets" i texten under bild 23). Bilden tagen av Paul Bowens.

Bild 11. Bilden visar samma sak som föregående bild, men ännu tydligare. Planet i bilden är en rysk Tu-95 (ett stort, kärnvapenbestyckat långdistansbombplan), som är ett mycket, mycket större flygplan än Cessna Citation. Läsaren kanske tycker att propellrarna ser konstiga ut. Förklaringen är att Tu-95 har dubbla, fyrbladiga, motroterande propellrar, vilket innebär att var och en av de fyra motorerna har två fyrbladiga propellrar som roterar åt varsitt håll (detta förklaras närmare i min artikel om propellerteori). Arrangemanget ger planet extremt hög fart för att vara propellerdrivet.
Det skulle vara intressant att se och höra en fysiklärare, som lektionen innan stolt presenterat den konventionella förklaringen till vingars lyftkraft (Equal Transit Time), och som nu, en lektion senare, stammande och svettandes inför hela klassen, försöker förklara ovanstående bild som lille Pelle tagit med sig hemifrån (dvs hur kan undertryck på vingarnas ovansida åstadkomma det vi ser i bilden?). Det blir nog både kvarsittning och sänkt fysikbetyg för Pelle. Bilden tagen av Vadom Savitsky.

Bild 12. En Concorde (topphastighet över mach 2.0, dvs mer än dubbla ljudhastigheten) håller precis på att sätta sig på banan. Deltavingade flygplan saknar ofta stabilisator (de bakre små vingar som de flesta plan har) och har därför svårt att få plats med klaffar, eftersom skevroder och höjroder måste trängas på bakre delen av vingen. Skevroder och höjdroder kombinerar man ofta i s k elevons. I stället för klaffar använder man sig av väldigt stor anfallsvinkel vid landning. Concorden hade så högt nosläge att piloterna hade svårt att se banan de skulle landa på. Av detta skäl kunde nosen vinklas ner vid start och landning (se bilden). En landande Concorde utgör en bra illustration av lyftkraft genom hög anfallsvinkel, dvs genom att accelerera luft nedåt. På grund av det höga nosläget vid landning blev luftmotståndet stort (planet blev ju som en flygande lada) och man balanserade hela tiden på gränsen till att stalla (för närmare förklaring av förhållandet lyftkraft/luftmotstånd klicka här). Här gällde det att ha kanonkoll på farten så att den inte gick ned under tillåtna värden. Vid alltför högt nosläge (vilket är samma sak som alltför låg fart) räckte inte motorerna till för att accelerera, och därmed få ner nosen, och planet var därmed dömt att krascha. Man kan nog utgå från att British Airways och Air France (som var de enda bolag som flög Concorde) valde ut sina duktigaste piloter att flyga dessa plan. Dessutom hade Concorde en tredje pilot (3P) eller flygingenjör (flight engineer) som övervakade alla instrument och system. En viktig uppgift för 3P var att hålla uppsikt över planets tyngdpunkt och pumpa bränsle mellan olika tankar för att hålla tyngdpunkten inom tillåtna värden (allt eftersom bränsle förbrukades). Concorde var nämligen mycket känslig för tyngdpunktsförskjutningar. Som kuriosa kan jag nämna att Concordeplanet, på grund av luftfriktionen, blev ganska varmt under cruise (farten var då mach 2.0 = dubbla ljudhastigheten). Temperaturerna låg runt +127°C vid nosen och över +90°C vid stjärten. Vid maxhastigheten, mach 2.2, blev nosens temperatur +153°C (imponerande med tanke på att lufttemperaturen på de höjder där Concorde flög, dvs strax under 60 000 fot, ligger på omkring -60°C). Uppvärmningen gjorde att planet förlängdes ca 15-25 cm.
Beträffande Concorde vid landning, så var pitch angle (nosens vinkel över horisonten) ca 10,5°. Samtidigt sjönk planet längs glidbanan, som på de flesta flygplatser är 3°, dvs flight path angle (vinkeln mellan planets rörelserikting och horisonten) var -3° (minustecknet beror på att velocity vector i detta fall är riktad nedåt). Angle of attack blir då, enligt definitionerna i bild 4, pitch angle minus flight path angle, dvs: 10,5°-(-3°)=13,5° (vi förutsätter här att det är vindstilla). Motsvarande beräkning av AoA för en landande MD-11 (se bild 7) ger: 6°-(-3°)=9°.

 

Olika vingprofiler

Vi ser således, utifrån dessa exempel, att en vinges anfallvinkel (dvs att accelerera luft nedåt) under alla förhållanden är en viktig faktor när det gäller att generera lyftkraft!

Ett propellerblad (och en helikopterrotor) fungerar grundläggande som en vinge, något som redan bröderna Wright insåg. Skillnaden är att propellern (rotorn) roterar i förhållande flygplanet. Den som tvivlar på att vingar accelererar luft nedåt rekommenderas att ställa sig bakom ett startande propellerflygplan eller under en startande helikopter. Glöm inte att hålla i hatten ordentligt!

Moderna vingar har i allmänhet inte den klassiska vingformen med välvd översida och nästan plan undersida (den konventionella profilen i bild 13).


Bild 13. Tre olika vingprofiler.

Även en planka, utan kurvatur, kan fungera som vinge, eftersom den kan skyffla luft nedåt om man ger den en lämplig anfallsvinkel. Det finns enkla modellplan som har sådana vingar. En helt plan vinge ger emellertid, även vid en måttlig anfallsvinkel, mycket turbulens på ovansidan, vilket kraftigt ökar luftmotståndet plus att ovansidan då inte bidrar till lyftkraften. Ett av målen vid formgivningen av en vingprofil är att få luftströmmen på ovansidan att vara laminär (dvs följa vingen) på så stor del av vingen som möjligt. Genom att ge olika typer av krökning på vingens över- och undersida, påverkar man luftströmningen runt vingen och kan skräddarsy den för olika ändamål (hög hastighet, bra lågfartsegenskaper, bra manöverförmåga, lågt luftmotstånd etc).

Fram till Andra Världskriget var fortfarande den klassiska vingformen den normala. Vingens tjockaste del ligger här ca en femtedel av vingkordan (vingens bredd) bakåt (räknat från framkanten). Strax före Andra Världskriget hade man dock börjat experimentera med s k laminära profiler. Där ligger tjockaste delen ungefär på vingens mitt. Dessutom är vingens undersida buktad ungefär lika mycket som översidan (se ovan). Detta leder till att man får ett laminärt flöde på en större del av vingen. Laminärt flöde betyder att luften följer vingen utan att bilda turbulensvirvlar (se bild 3). På den klassiska vingprofilen får man turbulens på ett större område av vingen (bakkanten), och därmed mer luftmotstånd, dvs lägre fart och sämre bränsleekonomi.

Turbulensvirvlar (vortex) på en vinges ovansida innehåller mycket energi. Energin i dessa virvlar tas från flygplanets rörelseenergi. Virvlarna förlorar oavbrutet energi till sin omgivning och ny måste tillföras, dvs turbulent flöde dränerar hela tiden planets rörelseenergi. Med andra ord så skapar turbulensvirvlar ett luftmotstånd (kallas också "drag" — uttalas "drägg") hos en vinge. Därför strävar man efter vingprofiler (t ex den laminära) som har så lite turbulent flöde som möjligt, oavsett om vingen är avsedd för hög eller låg fart.

Bild 14. Det första planet med laminär vingprofil (att undersidan är ungefär lika buktad som översidan framgår tydligt av bilden) var den klassiska P-51 Mustang, Andra Världskrigets kanske absolut bästa jaktplan (utvecklat och tillverkat i USA men användes också av engelsmännen — planet var faktiskt resultatet av en engelsk beställning). Bilden ovan visar en Mustang III, även kallad P-51B (enligt min ringa mening den snyggaste varianten av Mustang). För mer information om Mustangen och en bild på den slutgiltiga versionen av detta plan, klicka här och scrolla ned till avsnittet om North American P-51 Mustang.
Planet på bilden, döpt till "Berlin Express", tillverkades under WW2 och kraschade under en träningsflygning i juni 1944. Det har under 2000-talet sorgfälligt restaurerats till nyskick av entusiaster (med både mycket kunskap och mycket, mycket pengar). Efter restaureringen flög planet för första gången 2014, dvs 70 år efter att det sist flög. Puckeln under buken är kylsystemet till motorn. Normalt ger ett sådant upphov till stort luftmotstånd. Speciellt på motorstarka propellerplan med kolvmotorer, vilka genererar oerhört mycket värme som måste transporteras bort från motorn. Mustangen hade här en finurlig lösning. Luft sögs in framifrån och värmdes upp när den passerade kylaren. Eftersom luften värmdes upp till hög temperatur, expanderade den kraftigt och trycktes därför ut i bakändan av kylaren med hög hastighet. Kylaren fungerade därmed som en liten jetmotor, vilken genom sitt bidrag till dragkraften i stort sett neutraliserade sitt eget luftmotstånd.

Den nya vingens effektivitet framgår av en jämförelse mellan två av Andra Världskrigets bästa jaktplan, Spitfire IX och P-51 Mustang. Spitfiren hade en klassisk vingprofil medan Mustangen hade den nya laminära profilen. Båda planen hade samma motor och var ungefär lika stora och hade jämförbar beväpning. Spitfirens maxfart var 645 km/h medan Mustangen, med exakt samma motor, gjorde 725 km/h. Även räckvidden förbättrades med de nya vingarna. Spitfire kunde eskortera bombplan från England till Europas västkust medan Mustang kunde eskortera bombplanen ända till Berlin och tillbaka (en del av Mustangens övertag i räckvidd berodde på att den hade betydligt större inre bränsletankar än Spitfiren plus att Mustangen kunde ha fällbara extratankar — men även med samma bränslemängd skulle Mustangen haft ett visst övertag). Spitfiren hade visserligen andra fördelar gentemot Mustangen — den kurvade t ex bättre, men en Mustang kunde alltid avbryta striden och flyga ifrån Spitfiren — om de nu hade mötts i luftstrid.

Den laminära vingprofilens symmetriska form (under- och översidan i stort sett lika buktade) visar att olika lufthastighet över och under vingen, orsakad av olika krökningar, omöjligen kan vara förklaringen till lyftkraften hos denna typ av vinge.

Bild 15. Ovan ser vi vingprofilen närmast flygkroppen (moderna trafikplan har olika profiler på olika delar av vingen) på Boeing 747-8, vilken är den senaste varianten av den klassiska jumbojeten (profilen hämtad från Boeings hemsida). Vi ser att det handlar om en superkritisk vingprofil.

Så småningom började man experimentera med superkritiska vingprofiler, vilka har stora fördelar vid höga farter. Idag är denna vingprofil vanligt förekommande på jetplan (speciellt gäller detta den innersta delen av vingen, närmast flygkroppen). Den är, som framgår av bild 13, nedersta figuren, mer buktad på undersidan än på översidan. Enligt den "klassiska" förklaringen av lyftkraft borde plan med sådana vingar sugas nedåt i stället för uppåt. Det första plan som använde denna typ av vinge var Douglas DC-8, som var ett av de första passagerarjetplanen. Ingenjörerna på Douglas lär ha haft svårt att övertyga Donald Douglas Sr (som ju var av den gamla skolan) att DC-8 inte var avsedd att flygas upp och ned. Något som passagerarna kanske inte skulle ha uppskattat.

Bild 16. Det finns olika tekniker att optimera det laminära flödet över en vinge. Motorgondoler på jetliners stör t ex luftflödet runt en vingprofil så att det laminära flödet ersätts av turbulent flöde, varvid mycket lyftkraft förloras (plus att luftmotståndet ökar). För att motverka detta kan man använda olika typer av vortexgeneratorer. Dessa utgörs av lämpligt placerade plåtar eller veck (på t ex motorgondolerna) eller hack i vingarna som skapar vortex (virvlar). Dessa vortex tvingar luften att följa vingens ovansida (laminärt flöde). Bilden ovan, tagen strax efter start, visar en (haj)fenliknande vortexgenerator på en motorgondol. Genom att luften vid fotograferingstillfället var fuktig framträder vortexet tydligt i form av ett dimstråk (inne i vortexet är trycket lägre vilket utlöser dimbildning vid fuktig luft).
En nackdel med bakåtsvepta vingar (vilket både jetliners och stridsplan har) är att den strömmande luften på vingens ovansida får en rörelsekomposant riktad ut mot vingspetsen. Detta påverkar luftströmningen över vingspetsarna och kan leda till att dessa stallar (tip stall), vilket kan vara mycket farligt (efterom skevrodren då inte verkar). En bonus med vortexgeneratorer är att de inte bara optimerar den laminära strömningen över vingen utan också skapar vortex som är så kraftfulla att de förhindrar att luften som strömmar på vingens ovansida vandrar utåt mot vingspetsen (detta diskuteras närmare i min artikel om lyftkraft och luftmotstånd/drag — se länk i slutet av föreliggande artikel).

 

Konsten att stänga av sin egen tankeverksamhet

Det är ganska fascinerande att Equal Transit Time modellen (som beskrivs i inledningen av denna artikel) har levt kvar så länge utan att ifrågasättas. Tittar man på den laminära vingprofilen så ser man ju direkt att ETT-modellen omöjligen kan vara förklaringen till lyftkraften hos en vinge. Det är ganska intressant att se hur i stort sett alla (inklusive jag själv) svalt detta, utan att egentligen reflektera. Man tycker att massor av skolelever borde ha kommit på motsägelsen mellan att flygplan kan flyga upp och ned och att det är undertrycket på vingens buktade översida som suger upp planet. Det tycks som att vi människor sväljer det mesta vi hör utan att tänka, speciellt om det vi hör kommer från en "auktoritativ källa". Nu menar jag inte att det är fel att lyssna till auktoriteter. Självklart har en lekman oerhört mycket att lära av en professor i fysik, när det gäller fysik. Men när det gäller vingens lyftkraft kan man tycka att resonemanget är så uppenbart fel, att många direkt borde insett att så är fallet.

Från mina år som fysiklärare har jag ett annat bra exempel på hur människor alltför ofta kopplar bort sitt kritiska tänkande. Alla elever vet att lika elektriska laddningar (plus och plus respektive minus och minus) repellerar varandra och att olika laddningar (plus och minus) attraherar varandra. När man i fysiken går igenom atomen börjar man med väteatomen, som har en positiv kärna (bestående av en enda positivt laddad proton), kring vilken en negativt laddad elektron kretsar. Elektronen hålls kvar i sin bana på grund av att den positiva kärnan attraherar den negativa elektronen (ungefär som Månen hålls kvar i sin bana runt Jorden på grund av gravitationskraften). Så långt är allt gott och väl. Efter att man beskrivit väteatomen, som ju är den enklaste av alla atomer, går man vidare till heliumatomen, vilken innehåller två neutroner (neutrala, dvs utan elektrisk nettoladdning) och två protoner i kärnan, samt två elektroner som kretsar kring kärnan. Och nu kommer det intressanta. Jag har aldrig någonsin varit med om att en elev räckt upp handen och sagt ungefär så här, "Men magistern, varför hålls de två neutronerna kvar i kärnen, de är ju elektriskt neutrala och attraheras inte av protonerna eller av varandra? Och varför far inte protonerna isär, de har ju samma laddning och borde repellera varandra? Jag förstår inte hur heliumkärnan kan hålla ihop!" Trots att man vet att två protoner stöter bort varandra, sväljer man okritiskt den modell av heliumatomen som presenteras. Detta är anmärkningsvärt med tanke på att tonåringar gärna vill ifrågasätta och vara kritiska. För den intresserade läsaren kan jag nämna att förklaringen är att det finns en ytterligare kraft som verkar mellan kärnpartiklarna (proton och neutron), nämligen den s k starka kraften. Denna, som bara verkar på mycket nära håll (ca en protondiameter), är alltid attraherande och är ca hundra gånger starkare än den elektiska repulsionen mellan protonerna och det är den som håller ihop kärnan (den verkar även på neutronerna). Den starka kraftens enorma styrka är förklaringen till varför man får ut så mycket mer energi ur kärnreaktioner än vad man får av kemiska processer (där den elektriska kraften är den verksamma).

I det populära tv-programmet Mythbusters, som säger sig granska och avslöja myter, granskade man vid ett tillfälle något som hade med flygplan att göra (kommer inte ihåg exakt vad det var). Och trosvisst, talande i mun på varandra för att uppvisa sin renlärighet, konstaterade båda programledarna (som man alltid gör i sådana här program) att hela förklaringen till att flygplan flyger är att vingarna är plana på undersidan och buktiga på översidan och att luften av detta skäl måste gå fortare på översidan (varför måste den det, kan man undra? — detta förklaras oftast genom att man påstår att det är självklart). Inte så mycket "mythbusting" där inte. Mythbusters känner således varken till laminära vingprofiler eller att flygplan kan flyga upp och ned. Det tycks som om människor (även mycket intelligenta sådana) har förmågan att svälja teorier, som man egentligen borde inse inte kan stämma (som de som nämnts ovan), om dessa teorier presenteras av en tillräckligt stor auktoritet.

En vanligt sätt att i skolans värld "bevisa" den klassiska förklaringen till vingars lyftkraft är att läraren håller ett vanligt A4-papper med långsidan rakt ut. Papperet kommer då att hänga ned i en kurva (vars form beror på hur styvt papperet är). Sedan blåser läraren på papperets översida, och se, papperet ställer sig rakt ut (dvs lyfts upp från sin hängande form). Läraren förklarar nu stolt, att eftersom luften han blåste på papperets översida går fortare än på undersidan (där luftens fart är noll) så genereras ett undertryck där (enligt Bernoullis sats). Problemet är att om han skulle blåst på papperets undersida i stället så borde papperet enligt samma logik dras nedåt, eftersom luften på undersidan nu går fortare än luften på översidan. Men så sker inte. Även i detta fall påverkas papperet av en uppåtriktad kraft (papperet lyfts helt enkelt upp av luftströmmen, precis som att vinden tar tag i löv eller vad som helst). Luft har inte lägre tryck bara för att den rör sig. Bernoullis sats är överhuvudtaget inte inblandad här, eftersom luftströmningen på över- och undersidan av papperet är två helt separata flöden. Satsen handlar om förändringar i tryck och fart i ett visst flödesfält och kan inte användas för att jämföra olika, separata, av varandra oberoende flödesfält.

Den riktiga förklaringen till att papperet lyfts upp när man blåser på ovansidan är att luftströmmen kommer att följa papperets krökta form nedåt på grund av Coandaeffekten (förklaras i nästa avsnitt). Och eftersom den strömmande luften på papperets översida "dras nedåt" så orsakar luften en lika stor, uppåtriktad motkraft på papperet (enligt Newtons tredje lag).

 

Bernoulli och Coandaeffekten

För att återvända till flygets värld; så har vi hittills konstaterat att flygplan flyger genom att de accelererar luft nedåt. Nu är ju verkligheten alltid komplex. Långsamma plan har fortfarande den klassiska vingformen med mer välvd översida än undersida. En djupare teoretisk analys visar att Bernoullis lag också är inblandad i lyftkraften (men inte på grund av en vinges större krökning på ovansidan). Vi återkommer till detta i avsnittet "Olika perspektiv på detta med lyftkraft".

Att man åtminstone ibland har ett undertryck på vingens översida, kan man i speciella fall till och med se med blotta ögat. När ett stridsflygplan gör en sväng med hög g-belastning eller dyker och sedan gör en kraftig upptagning, utlöses ofta dimma på vingens översida, vilket orsakas av en kraftig trycksänkning där (att dimma bildas beror på en kombination av tryck och temperatur).

Bild 17. En F-18C som svänger kraftigt. Man ser tydliga dimstråk på det övre planets vingöversida. Klicka här för att se en video (ca 5,5 minuter), där du får följa med ett par F-18F som startar och landar på hangarfartyg. Vid flera tillfällen ser man tydligt den dimbildning som uppstår på vingens översida vid branta svängar och upptagningar (t ex vid 1 min 54 s).

En ytterligare faktor är den s k Coandaeffekten. Enligt denna "häftar" strömmande luft och vätskor fast vid gränsytor. Wikipedia ger följande definition:

Coandaeffekten kallas fluiders [vätskors och gasers] tendens att attraheras till närliggande ytor. ... Effekten uppkommer på grund av fluiders viskositet och att det krävs en viss kraft för gränsskiktet att separera.

Vid konstruktion av ventilations-, luftkonditionerings- och uppvärmingssystem måste man ta hänsyn till Coandaeffekten. Placerar man t ex ett tilluftsdon (luftinblås) för nära innertaket kommer luften (pga Coandaeffekten) att följa innertaket till motsatta väggen i stället för att sjunka ned och blandas med luften i rummet (vilket kan vara dåligt, men kan också utnyttjas i vissa system).

Kortfattat uppstår Coandaeffekten på följande sätt: När en fluid strömmar fritt ur ett munstycke drar den med sig, och blandas med, omgivningen. Om man närmar en fast yta till den strömmande fluiden (från sidan), begränsas strömningen och det uppstår en kraft mellan ytan och fluiden. Fluiden accelererar då för att balansera kraften, vilket resulterar i en tryckskillnad i den strömmande fluiden (vinkelrät mot strömningen). Denna tryckskillnad böjer av fluiden mot den fasta ytan och till slut ansluter sig den strömmande fluiden till denna.

Bild 18. En vanligt förekommande illustration av Coandaeffekten. Figuren visar en vattenstråle som följer en mjukt rundad, konvex (utåtbuktad) yta i stället för att rinna rakt ned på grund av gravitationen. Detta påstås ofta bero på den s k Coandaeffekten.
Det är tveksamt om ovanstående bild verkligen utgör ett exempel på Coandaeffekten. Denna effekt beror ju, enligt vad som förklarats ovan, på att ett vätske- eller gasflöde sveps med av ett annat flöde och de krafter som är involverade i detta. Här (i bilden ovan) handlar det snarare om att vätskan (vattnet) följer en konvex yta på grund av ett fysikaliskt fenomen kallat adhesion (i kombination med kohesion), vilket attraherar vätskor (och gaser) till fasta kroppars ytor (ibland hänvisar man i stället till ytspänningen — detta menar jag dock inte är helt korrekt, eftersom ytspänning defineras som summan av de krafter som uppstår mellan molekyler vid gränsytan mellan en vätska och en gas). Bilden ovan kan möjligen tjäna som en pedagogisk illustration av Coandaeffekten. Dessvärre är Coandaeffekten ganska svår att till fullo förstå och den intresserade läsaren hänvisas till Wikipedias (helst engelskspråkiga Wikipedia) artikel i ämnet.
Ett mer korrekt exempel på Coandaeffekten är exemplet ovan med ett tilluftsdon nära ett innertak.

Luften som strömmer närmast vingens översida häftar således fast vid denna och tvingas att följa dess form (gäller givetvis också undersidan). Eftersom luften på översidan av vingen dras nedåt på grund av vingens krökning, får vi enligt Newtons tredje lag, en motsvarande uppåtriktad kraft på vingen. Om vingens undersida är rak skapas ingen vertikal kraft där. Resultatet blir därför att Coandaeffekten ger en uppåtriktad kraft på vingen. Här förutsätter vi således att översidan är mer buktad än undersidan, dvs en konventionell vingform. Vid en laminär vingprofil (som är lika krökt på båda sidorna) dras luften, enligt samma logik, nedåt på översidan och uppåt på undersidan, varvid Coandaeffekten ger (den vertikala) nettokraften lika med noll.

Tre mekanismer tycks således vara involverade i skapandet av lyftkraft; Newtons tredje lag (skyffla luft nedåt), Bernoullis lag (lägre tryck på vingens översida) och Coandaeffekten (den strömmande luften "häftar" fast vid vingytan). Med tanke på att det endast är ett tunt luftlager som "häftar" fast vid vingen på grund av Coandaeffekten, måste denna krafts bidrag rimligen vara litet, ja i det flesta fall antagligen försumbart (undantaget är vissa typer av klaffar och slats, där Coandaeffekten utnyttjas, och där den ger ett visst bidrag till lyftkraften). När det gäller de andra två effekterna (skyffla luft nedåt och lägre tryck på vingens ovansida) visar en närmare teoretisk analys att dessa två effekter var för sig kan förklara hela lyftkraften. De utgör i själva verket två olika perspektiv på hur lyftkraft genereras. Detta kommer att diskuteras ingående i avsnittet "Olika perspektiv på detta med lyftkraft".

 

Bernoulli i nytt ljus

Klicka här för en matematisk härledning av Bernoullis lag.

Låt oss nu titta lite närmare på Bernoullis lag. Den matematiskt intresserade läsaren rekommenderas att ta del av ett bevis för denna lag (klicka på länken ovan!). Den utgör, som påpekats tidigare, ett (av två möjliga) perspektiv på hur en vinges lyftkraft skapas. Enligt denna lag gäller följande:

Första termen (P) är det statiska trycket, dvs det vi vanligen kallar lufttryck. Andra termen utgörs av det dynamiska trycket eller farttrycket. Det är det tryck vi får på grund av vingens fart genom luften. I formeln representerar ρ (den grekiska bokstaven "rho") luftens densitet och v farten. Termen c på högra sidan av likhetstecknet är en konstant (nedan skall vi se att denna konstant är lika med systemets totala energi).

När jag som liten grabb åkte bil, brukade jag ibland veva ned sidofönstret och sticka ut handen för att känna vinddraget (dynamiska trycket). Genom att hålla den öppna handen rakt ut och sedan vrida denna i fartvinden (ungefär som ett höjdroder), kände man tydligt att armen ville röra sig uppåt eller neråt "av sig själv". Vid högre farter blev effekten avsevärt större. "Vad håller du på med pöjk! Veva genast upp fönstret! Det drar ju!"

Läsaren kanske ser likheter mellan andra termen i Bernoullis ekvation och den välkända formeln mv2/2, vilket är formeln för kinetisk energi (rörelseenergi) hos ett föremål med massan m och farten v. Andra termen i ekvationen är helt enkelt luftens rörelseenergi per volymsenhet (per m3), vilket är en form av tryck (man kan lätt visa att enheten för energi per volymsenhet är ekvivalent med enheten för tryck[1]). Det statiska trycket P (första termen) kan man se som potentiell energi per volymsenhet (per m3). Formeln säger således att summan av den potentiella och kinetiska energin per volymsenhet av den strömmande luftmassan (eller vätskan) är konstant (vilket också är vad energiprincipen säger). Vi ser att om v ökar så blir term nummer två större (den ökar kvadratiskt, dvs fördubblas v så fyrdubblas termen, tredubblas v så niodubblas termen etc). Eftersom summan av termerna i vänstra ledet är konstant, måste term nummer ett minska om term nummer två ökar (och vice versa). Om farten ökar (det dynamiska trycket ökar) minskar således, enligt Bernoullis ekvation, det statiska trycket och tvärtom. Ekvationen gäller egentligen bara för icke-kompressibla flöden, som vätskeflöde, men den stämmer på ett ungefär även för gaser vid låga farter (jag vill minnas att man brukar säga att den stämmer hyfsat upp till mach 0.3, dvs 30 procent av ljudhastigheten — vid havsytan är mach 0.3 ungefär 370 km/h).

Tidigare (bild 5) har vi diskuterat begreppet lyftkraftskoefficient (CL) och sambandet mellan denna och anfallsvinkeln (AoA). Vi såg där i grafen att CL (som är en enhetslös variabel) är i det närmaste proportionell mot anfallsvinkeln (dvs här använder vi inte Bernoullis lag utan att en vinge accelererar luft nedåt beroende på dess anfallsvinkel för att förklara lyftkraften). Sambandet mellan lyftkraftskoefficient och lyftkraft ges av följande formel:
L = CLSq      (2)
där L är lyftkraften, S vingarean och q dynamiska trycket (dvs q = ρv2/2). Den sista faktorn (dvs q) känner vi igen från Bernoullis lag.
Lyftkraften beror således bl a på vingarean S. Vill man flyga långsamt med ett flygplan, designat för hög fart, vore det bra att kunna öka vingarean, vilket man kan göra med klaffar och slats (de senare ökar inte bara arean utan bidrar på andra sätt till lyftkraften — se bild 23). Flygplan avsedda för korta banor (som alltså måste kunna flyga långsamt) konstrueras ofta med stora vingar (och även stora, stora klaffar). En annan möjlighet är att öka CL genom att höja nosen, dvs öka AoA (CL är ju proportionell mot AoA enligt bild 5). CL kan också göras större genom att man använder en optimerad lågfartsvingprofil. När man flyger högt eller skall starta eller landa på en flygplats som ligger högt och där det kanske är 39°C varmt och kanske dessutom lågt lufttryck, är luftens densitet förhållandevis låg och man måste kompensera detta genom några av de andra faktorerna i formeln (fart, vingarea, anfallsvinkel). Till detta tillkommer att ju tyngre ett visst flygplan är lastat (med last och bränsle) desto mer lyftkraft och därmed desto högre fart (och därmed desto längre startbana) krävs för att planet skall lätta. Med starkare motorer, vilket ger bättre acceleration, kan man givetvis minska kravet på startbanans längd.
Ibland kanske det helt enkelt inte går att starta från en viss flygplats av dessa skäl (tyngd, temperatur etc). På grund av tyngden kan farten då planet lättar bli så hög att planet (även vid maximalt motorpådrag) inte hinner uppnå denna fart på befintlig bana (oavsett hur mycket klaffar etc man använder). Då återstår att plocka bort last och passagerare. Eller också ser man till att starta på natten när det är betydligt svalare (om temperaturen är den begränsande faktorn). Flygplatser som ligger högt (Quito i Peru) eller där temperaturen ofta är hög (Dubai), har ofta av detta skäl långa banor (runt 4 km eller mer). Medan man i Nordeuropa klarar sig med 3 km (även för de största planen).
Vi ser också att lyftkraften är proportionell mot farten i kvadrat. Dvs fördubblas farten fyrdubblas lyftkraften etc. Och halveras farten minskar lyftkraften till en fjärdedel. Farten är således en mycket avgörande faktor när det gäller lyftkraft. Det är därför ett flygplan som är tungt lastat behöver högre fart för att lätta än när samma plan har lite last. Vingarean hos en helikopter (rotorbladens area) är inte speciellt stor, men tack vare att bladen snurrar fort genereras tillräcklig lyftkraft (längst ut rör sig bladen med farter som ligger nära ljudhastigheten — därav "smattrandet" från en helikopter, vilket helt enkelt är transsoniska bangar). Och eftersom bladen rör sig oberoende av hur själva helikoptern rör sig, kan den hovra och landa på en femöring.
Lite kuriosa: Kolla den här videon, som visar en startande Pilatus PC6 (ett schweiziskt, extremt STOL-plan — STOL=Short Take Off and Landing). Planet är en s k turboprop (turbindrivet propellerplan). Klippet visar en Pilatus utan last, dvs med bara pilot. Med full last (10 passagerare) blir startsträckan givetvis längre, men ändå anmärkningsvärt kort. Med 1 500 kg last är landningssträckan bara 130 m. Observera de enorma vingarna! Notera också att planet backar. Detta görs genom att reversera propellern (propellerbladen vrids så att propellern verkar åt motsatta hållet). Detta används framför allt för att bromsa planet vid landning (och förekommer på de flesta kommersiella propellerplan — jetplan kan på motsvarande sätt reversera motorerna, vilket innebär att jetstrålen riktas framåt).

Teoretiska beräkningar och vindtunnelförsök visar att luften som strömmar kring en klassisk vingprofil faktiskt rör sig snabbare på översidan än på undersidan. Förklaringen till detta är dock inte att luften, som rör sig längs den buktiga översidan, har längre sträcka att tillryggalägga och därför måste (vadå "måste"?) röra sig snabbare . Vilket är vad den gängse, felaktiga förklaringen hävdar (ETT-modellen). Även för vingar som har samma krökning på ovan- och undersidan (laminära) eller har större krökning på undersidan (superkritiska), så har luftströmmen högre hastighet på ovansidan. Den högre hastigheten på ovansidan beror på helt andra aerodynamiska faktorer än olika krökningar. Både vindtunnelförsök och beräkningar visar dessutom att luften på översidan av vingen rör sig betydligt snabbare än vad som kan förklaras av den längre sträcka som luften måste röra sig där. Jag ber att få återkomma till ovanstående i avsnittet nedan med rubriken "Olika perspektiv på detta med lyftkraft"

Men om vi nu idag vet att den klassiska vingens större krökning på ovansidan inte är nödvändig för att skapa lyftkraft, varför har man då fortfarande sådana vingar på många propellerdrivna flygplan? Svaret är att en vinges form bidrar till att skapa lyftkraft genom att formen styr luftströmningen runt vingen. Det handlar dessutom inte bara om att skapa lyftkraft utan också om att ett ge litet luftmotstånd (som påverkar fart och bränsleförbrukning och därmed räckvidd) och god manöverförmåga. Ibland vill man ha flygplan som kan flyga långsamt (för att t ex kunna använda korta banor). Ibland prioriterar man hög fart (stridsplan) och ibland prioriterar man lågt luftmotstånd (för att kunna flyga ekonomiskt och långa sträckor). När det gäller trafikplan vill man givetvis att de både skall ha lågt luftmotstånd (dels för att kunna flyga långt och dels för att ge flygbolagen bra ekonomi), ha bra lågfartsegenskaper (för att kunna använda mindre flygplatser med korta banor) och samtidigt kunna flyga fort (för att korta ned restiden). En vingprofil är därför en kompromiss mellan många olika krav. Vill man både kunna flyga fort och ha låg fart vid start och landning (krav som är motstridiga), måste man normalt komplettera vingen med olika komplicerade, lyftkraftökande anordningar, som klaffar (flaps) och slats (se bild 23 nedan) eller ännu mer avancerade lösningar. Det tidigare nämnade planet F-8 Crusader (som oftast var stationerat på hangarfartyg, där låg fart vid start och landning är extra viktigt med tanke på de korta banlängderna) hade t ex "blåsta klaffar", vilket innebär att kompressorluft från motorn blåses över klaffarna genom en rad hål på vingens bakdel. I detta fall stod Coandaeffekten för en stor del av lyftkraftsökningen.

Bild 19. Även det välkända amerikanska, tvåmotoriga stridsflygplanet McDonnell Douglas F‑4 Phantom II hade blåsta klaffar (precis som Crusader så var Phantom II avsedd att användas på hangarfartyg, men kom till största delen att stationeras på vanliga flygbaser). Här en Phantom II i turkiska färger. Planet hade två mans besättning; pilot och radar-/vapenoperatör. Planet, som byggdes i 5 195 exemplar, har använts av ett stort antal flygvapen (USA, Tyskland, England, Grekland, Israel, Iran, Sydkorea, Turkiet m fl) och pensionerades i USA 2016 efter nästan 60 års trogen tjänst men flyger fortfarande i några länders flygvapen. Phantom II var f ö också aktuell för Sverige under en period. Nu valde vi i stället att tillverka ett eget plan, Saab AJS/JA 37 Viggen (huruvida detta var ett bra eller dåligt val råder det delade meningar om). Phantom II var kanske inget vackert flygplan, men ser utan tvekan "muskulös" och kompetent ut.
På marken blev cockpit som ett växthus (gäller av uppenbara skäl alla stridsplan — att ha perfekt sikt åt alla håll har sitt pris) varför man ofta hade huvarna öppna före start och efter landning, dvs även under taxning (som på bilden). Planet på bilden har ingen yttre vapenlast utan endast tre stora fälltankar.
Bild 20. Hangarfartygsbaserade F-4 hade ett hydrauliskt expanderbart, teleskopiskt noshjulsställ, vilket ökade planets initiala anfallsvinkel. Detta system var speciellt viktigt på de brittiska hangarfartygen, eftersom dessa var betydligt mindre än de amerikanska. Amerikanska F-4 kunde expandera nostället med 0,5 m och brittiska F-4 med 1 m. Detta gav de amerikanska planen knappt 6° initial anfallsvinkel och de brittiska planen ca 9° (bilden ovan — jämför också med bild 8 och 9).
Bilden ovan visar en brittisk F-4 Phantom II ett par sekunder innan den skjuts iväg med katapulten. Noshjulsbenet är i sitt förlängda läge (+1 m — jämför med föregående bild). På framkant av flygplanets högervinge ser vi att framkantsklaffarna (se text under bild 23) är i sitt utfällda läge. Man ser också den utfällda (bakkants)klaffen (under vingen alldeles bakom huvudstället). Den stora eldslågan bakom planet kommer från efterbrännkamrarna (ebk). Vid start från hangarfartyg används ibland full ebk (beroende på planets vikt och motorstyrka). Den uppfällda skärmen bakom flygplanet är till för att skydda personal som befinner sig bakom planet. Gissa om däckspersonalen har hörselskydd!
Observera vajern under flygkroppen (bakom noshjulet)! Ena änden fästes i en stark fästpunkt under flygkroppens vänstra sida och drogs sedan genom en krok på katapulthuvudet (som befinner sig precis bakom noshjulet) och till motsvarande fästpunkt på andra sidan av flygkroppen. Efter start ramlade vajern av av sig själv (enstaka gånger fungerade inte detta och besättningen hade då bara någon sekund på sig för att skjuta ut sig, innan flygplanet hamnade i vattnet framför fartyget. Vajern gjorde att piloten hade begränsade möjligheter att lyfta nosen (rotera) för att planet skulle lätta. Men det behövdes inte, eftersom det förlängda nosstället gav tillräcklig initial anfallsvinkel.
På moderna, hangarfartygsbaserade stridsplan (t ex F-18 — se bild 17) kopplas katapulten direkt till nosstället, vilket kräver en speciell och mycket kraftig konstruktion, med tanke på de enorma krafter som är involverade (katapulten på de moderna amerikanska hangarfartygen har en maxeffekt på över 100 000 hästkrafter — jag har sett betydligt högre siffror men det beror nog lite på hur man räknar). Katapulten kan accelerera ett plan som väger 30 ton från stillastående till 270 km/h på 2 sekunder! Vid varje start räknar man fram vilken effekt katapulten skall ge beroende på vilken flygplanstyp det handlar om, planets vikt, vindstyrka etc. Normalt används bara en mindre del av maxeffekten. Katapulterna är normalt ångdrivna men på nästa generation amerikanska hangarfartyg kommer de att vara elektriskt drivna.
Den intelligente läsaren kanske undrar varför inte flygplanet for iväg som en raket när man drog på med fullt motorpådrag och full ebk (vajrarna håller ju inte tillbaka planet och bromsarna räcker inte till). Förklaringen är att man i flygplanets bak hade en stång fäst mellan däck och flygplan (en s k hold back bar). Den hade en brytpinne, som var avpassad för respektive flygplanstyp, och som var tillräckligt stark för att med viss marginal hålla kvar planet vid full motordragkraft. När katapulten "avlossades" gick brytpinnen av och planet for iväg. På moderna flygplan som F-18, där katapulten kopplas till nosstället, kopplas hold back bar också dit (men är riktad bakåt).

 

Mer om vingar

När det gäller den klassiska vingprofilen så bidrar den krökta översidan till att vid låg hastighet skapa ett optimalt luftflöde för att rikta detta flöde nedåt med så lite luftmotstånd som möjligt. På så sätt får vingen stor lyftkraft i förhållande till farten.

Även laminära och superkritiska vingprofiler optimerar flödet runt vingen men inom andra områden av fart och anfallsvinklar etc. Olika vingformer har helt enkelt olika för- och nackdelar. Vingar avsedda för hög fart (t ex stridsplan) har ofta tunna profiler (vingen hos USA:s klassiska jaktplan F-104 Starfighter var så tunn att man faktiskt kunde skära sig på framkanten — klicka här för att se en filmsekvens med F-104; notera de korta vingarna, designade för mycket hög fart!). I praktiken är det hela ännu mer komplicerat, eftersom moderna vingar oftast har olika profiler på olika delar av vingen. Plus att vingen också kan vara twistad (torderad, dvs vriden kring sin längdaxel). Detta ger olika olika anfallsvinklar på olika delar av vingen.

Bild 21. Den vänstra delen av bilden visar hur stall strips kan se ut i verkligheten (en ofta triangulär metallist på vingens framsida). Den högra delen av bilden visar hur det fungerar. Vid höga anfallsvinklar genererar stallstripsen turbulens som gör att lyftkraften först försvinner på den delen av vingen där stallstripsen sitter (dvs närmast flygkroppen) när farten närmar sig stall speed.
På trafikplan väljer man ofta en profil längst in på vingen som stallar tidigt, dvs vid något högre fart än resten av vingen (ofta har man en superkritisk profil där, vilken är en utmärkt högfartsprofil men ger sämre lyftkraft vid lägre farter, dvs precis som man vill att det skall vara i detta fall). Då har man fortfarande fungerande skevroder när stall inträder och man får en mjuk stall som går relativt lätt att häva. Om en vinge stallar ute vid vingspetsen (där skevrodren i allmänhet är placerade), riskerar man att få en betydligt mer obehaglig och farlig stall. Speciellt om man har någon form av asymmetri (enmotoriga propellerflygplan har, med få undantag, en asymmetri på grund av att propellern roterar åt ett visst håll; detsamma gäller för tvåmotoriga flygplan med propellrar som roterar åt samma håll eller där en motor stannat; tvåmotoriga flygplan med motroterande propellrar har däremot inga asymmetriproblem). När det gäller flermotoriga jetplan så får man asymmetri om en motor stoppar. Här har jetplan med motorerna i stjärten (DC-9, MD-80, och vissa modeller av Embraer och CRJ) en stor fördel, eftersom momentarmen då blir kortare (eftersom de är monterade direkt på flygkroppen) och asymmetriproblemen motsvarande mindre. Vid asymmetri finns risken att planet viker sig över en av vingarna (om vingen är stallad längst ut har man dålig eller ingen skevroderverkan för att motverka detta) och riskerar att hamna i spinn. Inträffar detta på låg höjd hinner man inte ta sig ur spinnen. Men tack vare stallvarnare, AoA-indikering och autothrottle är risken liten att man hamnar i stall och ännu mindre att man hamnar i spinn. Dessutom har många moderna trafikplan s k "flight envelope protection", vilket innebär att om planet närmar sig stall och piloterna inte reagerar omedelbart så tar flygdatorsystemet över och drar på motorerna och sänker nosen.
Bild 22. Bilden visar en av de fyra propellrarna på en C-130 Hercules. Propellerbladens twist framgår tydligt. Twisten hos en vinge är inte lika lätt att se. Observera att propellrar och vingar fungerar på samma sätt.
Ett annat sätt att få olika stallegenskaper hos olika delar av en vinge är att twista vingen, dvs vrida den (läsaren har säkert noterat att propellrar normalt har twist — se bild ovan). Olika delar av vingen får då olika anfallsvinklar. Man kan på så sätt se till att den inre delen av vingen alltid har större anfallsvinkel än de yttre delarna, vilket leder till att den inre delen stallar först. Ofta använder man en kombination av olika vingprofiler och twistning för att få önskade egenskaper.
Winglets (se nästa bild) förbättrar stallegenskaperna ute vid vingspetsarna (förutom att de minskar bränsleförbrukningen). För att förbättra en vinges egenskaper (och bl a få bättre stallegenskaper) finns, förutom de lösningar som hittills nämnts; leading edge cuffs, stall fences, slots och vortex generators (en bra sammanfattning hittar man här).
Aerodynamik är som sagt ett komplicerat område. Mycket, mycket komplicerat.

Förr tog man fram nya vingprofiler genom vindtunnelförsök, men numera, med tillgång till kraftfulla superdatorer, kan man testa olika vingar genom teoretiska beräkningar. Bakom vingen hos ett modernt trafikplan eller stridsplan ligger enorma beräkningar. Går man tillbaka några datorgenerationer hade de beräkningar som görs idag, i samband med vingkonstruktioner, tagit hundratals eller tusentals år att göra (dvs var i praktiken omöjliga att genomföra), men med de senaste superdatorerna handlar det kanske om några timmars "siffertuggande". De mest kraftfulla datorerna idag kan utföra mer än 1015 (en miljon miljarder) flytalsoperationer (flops) per sekund! NACA (National Advisory Committee for Aeronautics), som numera heter NASA, och en del andra flygtekniska operatörer har tagit fram ett stort antal standardvingprofiler, vilka används en hel del (speciellt av mindre tillverkare av flygplan), medan de stora flygindustriella koncernerna, som Boeing och Airbus, ofta räknar fram sina egna profiler.

Bild 23. En Airbus 300 med fullt utfällda flaps (bakkanten av vingen) och slats (framkanten). Det svenska ordet för flaps är klaffar. Såvitt jag vet finns inget svenskt ord för slats. Mellan slatsen och vingens framkant finns, som synes, en spalt (springa). Där tvingas luft igenom under kraftig acceleration, vilket ger en stark luftström på vingens ovansida. Denna minskar turbulensen (genom att luften rör sig snabbare och därmed laminärt över ett större område) på ovansidan (här är faktiskt den ovannämnda Coandaeffekten inblandad). Den som är seglare kanske ser vissa likheter med luften, som under bidevindssegling, strömmar (genom "spalten") mellan en hårdskotad genua och storseglet.
Vissa flygplan har i stället för slats något som kallas framkantsklaffar. De ser ut ungefär som de vanliga klaffarna på vingens bakkant, fast de oftast är betydligt mindre (se bild 20 ovan). I detta fall har man ingen luftspalt mellan slats och vinge, som i bilden ovan, utan framkantsklaffarna ökar helt enkelt vingens area och kurvatur. Det förekommer också att man har slats på en del av vingen och framkantsklaffar på en annan del.
Den vertikala "fenan" på vingspetsen (närmast betraktaren) minskar virvelbildningen vid spetsen och ger flera procent (upp till 6%) lägre bränsleförbrukning. Airbus lösning kallas sharklets medan Boeings motsvarighet, som ser helt annorlunda ut (vingspetsen är böjd uppåt i nästan 90° vinkel), går under namnet winglets (winglets på en Boeing 737 är 1,8 m höga). Det allra senaste är twistade (vridna) vingspetsar (raked wingtips), vilket man ser på många nyproducerade (2017) Boeing 777 och alla Boeing 787 (den s k Dreamliner), och som har samma funktion som winglets. Airbus använder f ö numera (2018) winglets av Boeingtyp på sina modernaste flygplan (Airbus 320neo och Airbus 350). Detta med winglets etc är oerhört komplicerat och det finns olika åsikter om deras nytta. Winglets fungerar också som en slags vingförlängare, dvs ökar flygplanets (skenbara) spännvidd, vilket är fördelaktigt. Genom winglets kan man ge ett flygplan större spännvidd utan att den i praktikten ökar (ju större spännvidd desto mer får flygbolaget betala för parkering vid gaten — desto mer plats tar ju planet).

Överhuvudtaget så finns det mycket att säga om aerodynamik, vilket är ett oerhört komplext ämne. I de förenklade förklaringar som getts ovan har t ex bortsetts från att luften är kompressibel. Tar man hänsyn till detta blir alla beräkningar betydligt mer komplicerade (vid de låga farter, som är aktuella för segelplan och mindre privatplan, spelar luftens kompressibilitet mindre roll).

Flera förenklingar har gjorts ovan. Det är inte enbart anfallsvinkel och eventuella extra lyftkraftsökande anordningar — flaps etc — som bidrar till att luft skyfflas (pressas/accelereras) nedåt. Själva formen på en vinge påverkar, som nämnts ovan, luftströmmen runt den (givetvis), och kan bidra (mer eller mindre, beroende på vingprofil) till att leda luft nedåt. Så formen på vingen, t ex en mer eller mindre krökt översida och kurvaturen på krökningen, och inte bara anfallsvinkeln, har stor betydelse för lyftkraften (och även för luftmotståndet).

 

Olika perspektiv på detta med lyftkraft

Inom vetenskapen kan man ibland, när det gäller komplicerade teorier som omfattar flera parametrar, fråga sig vad som är orsak och verkan (hönan och ägget). Kan det t ex vara så att en del av eller kanske hela undertrycket på en vinges ovansida orsakas av att vingen skyfflar stora mängder luft nedåt? Det verkar synnerligen troligt att svaret är ja.

Ett propellerblad fungerar i princip exakt som en vinge (vilket redan bröderna Wright insåg. Bakom en roterande propeller blåser det rejält. Tror du mig inte, ställ dig alldeles bakom ett startande propellerplan! Framför propellern har vi i stället ett starkt sug (dvs vi har ett undertryck där). Går motorn på högvarv riskerar man att sugas in propellern om man kommer för nära. På jetmotorer är problemet ännu större och det har vid flera tillföllen hänt att människor sugits in i deras luftintag.

Under de år när Sverige hade runt 500 stycken J29 Flygande Tunnan (under 1950 och 60-talen), var det minst två flygmekaniker som sögs in i motorn och dog (J29 hade ett stort luftintag i nosen). Man skulle alltid ha ett skydd framför luftintaget när planet stod på marken, men ibland slarvade man tydligen. Det händer också idag att markpersonal sugs in i jetmotorer. Senast jag läste om detta var 2015, när en tekniker i Indien sögs in i en motor på en Boeing 747. Några år tidigare, på El Paso International Airport, sögs en tekniker in i en av motorerna på en Boeing 737, mitt under det att passagerarna höll på att gå ombord. Chansen att överleva är noll!

Frågar man sig vad som är orsaken till undertrycket framför en roterande propeller eller en jetmotor, så är det uppenbara svaret att propellern eller kompressorn skyfflar/accelererar luft bakåt. När luft strömmar till för att fylla ut undertrycket (som bildas när propellerns skyfflar luft bakåt), upplevs detta som ett sug. Rimligen bör detta resonemang mer eller mindre också kunna tillämpas på en vinge. Ovan har vi sett att det dynamiska trycket (ρv2/2) finns med både i Bernoullis lag (ekvation 1), och i sambandet mellan lyftkraft och lyftkraftskoefficient etc (ekvation 2). I den senare ekvationen ingår anfallsvinkeln som parameter. Bernoullis lag handlar om undertycket på en vinges ovansida, medan anfallsvinkel handlar om att accelerera luft nedåt. Att samma faktor (dynamiska trycket) finns med i båda uttrycken tyder på att det finns en koppling mellan dem.

Eftersom ett propellerblad fungerar som en vinge, kan man också säga att en vinge fungerar som ett propellerblad. Och precis som att propellerbladet ger upphov till ett undertryck framför propellern (dvs ett sug framför propellern) ger vingen upphov till ett undertryck ovanför vingen (propellern verkar ju horisontellt och skyfflar luft bakåt medan vingen verkar vertikalt och skyfflar luft nedåt, vid planflykt). Så man kan säga att Newton (tredje lagen om aktion och reaktion) och Bernoulli (summan av rörelseenergi och potentiell energi är konstant — se härledningen av Bernoullis lag, länk ges ovan) utgör två olika perspektiv på en och samma sak. Många mekaniska problem kan lösas antingen genom att man tittar på systemets energier eller att man tittar på de verkande krafterna. Krafter är direkt kopplade till rörelsemängd (rörelsemängd hos ett objekt är lika med produkten av objektets massa och dess hastighet, och kraft är tidsderivatan av rörelsemängden), varför man kan sammanfatta ovanstående i:

Utifrån Bernoullis perspektiv förklarar man en vinges lyftkraft genom att utnyttja energins konservering.
Utifrån Newtons perspektiv förklarar man en vinges lyftkraft genom att utnyttja rörelsemängdens konservering.
Båda dessa ansatser leder fram till Bernoullis lag och i förlängningen samma aerodynamiska formler (t ex formel (2) ovan), dvs ger samma praktiska resultat. Bernoullis lag kan således bevisas både med hjälp av energiprincipen (energin konserveras i ett slutet system) och med hjälp av de grundläggande rörelselagarna i Newtons mekanik (och i förlängningen utifrån att rörelsemängden konserveras i ett slutet system). Den senare metoden har använts i min härledning av Bernoullis lag (som diskuteras i avsnittet "Bernoulli nytt ljus"). Av detta framgår hur fundamentalt dessa två ansatser är kopplade till varandra. Man kan således inte bara förklara lyftkraft med hjälp av dessa två olika ansatser, utan man kan också förklara den ena ansatsen (Bernoulli/undertryck på vingens ovansida) med hjälp av den andra ansatsen (Newton/skyffla luft nedåt).

Energi och rörelsemängd är fysikens två mest fundamentala storheter. Total energi och total rörelsemängd konserveras alltid i ett slutet system. Dessa konserveringslagar är två av fysikens mest grundläggande principer. I min artikel om modern fysik kan läsaren läsa mer om detta (i avsnittet "Vad är fysik?").

Ovanstående leder direkt till följdfrågan, om nu undertrycket på en vinges ovansida (Bernoulli) kan förklaras av att vingen skyfflar luft nedåt (Newton) kan då skyfflandet av luft nedåt förklaras av undertrycket på en vinges ovansida, eller är relationen mellan Newton och Bernoulli asymmetrisk? Jag har inget definitivt svar på detta, men har svårt att se hur undertrycket på en vinges ovansida skulle kunna få denna vinge att skyffla luft nedåt. Även om man formellt matematiskt skulle kunna härleda Newtons perspektiv från Bernoullis (vilket jag tror är möjligt) kan jag inte se några fysikaliska mekanismer som skulle avspegla denna formella matematik. Därför tror jag det är korrekt (i varje fall pragmatiskt) att betrakta Newtons perspektiv (skyffla luft nedåt) som det grundläggande.

Bernoullis sats spelar således en roll i diskussionen om vingars lyftkraft. Felet med den klassiska men felaktiga förklaring som blandar in Bernoullis lag, är att man använder Bernoullis lag på felaktigt sätt. Där antar man (Equal Transit Time) att de luftmolekyler som skiljs åt vid vingens framkant anländer till vingens bakkant samtidigt (och att därför luften över vingen, på grund av ovansidans större krökning, måste ha högre hastighet än under vingen). Experiment i vindtunnel visar emellertid att detta antagande är felaktigt. Luften ovan vingen strömmar viserligen med högre hastighet än under vingen men luftmolekyler som skiljs åt vid vingens framkant anländer inte till bakkanten samtidigt. I själva verket är flödena över vingen och under vingen två helt separata flöden. Man kan tillämpa Bernoullis lag på vart och ett av dessa flöden men inte inte på hela luftflödet runt vingen (vilket felaktigt görs i den i populärmedia och skolböcker så vanliga förklaringen).

Det första felet med ETT (Equal Transit Time) är således att luften högre hastighet på en vinges ovansida inte beror på olika olika krökningar av vingens ovan- och undersida. Förklaringen ligger i stället hos en vinges aerodynamik. Betrakta följande bild:

Bild 24. Bilden visar luftflödet runt en klassisk vingprofil. Pilarna visar luftströmningens riktning och hur tätt pilarna ligger är ett mått på luftens hastighet relativt vingen. Vinkeln mellan de räta linjerna är vingens anfallsvinkel. Vi ser att hastigheten hos luften är högre på ovansidan än på undersidan. Förklaringen till detta är att strömningshastigheten generellt ökar vid utskjutande och konvexa ytor (exempelvis frampartiet av ett flygplan eller en vinge och minskar vid inbuktande ytor (framför allt bakpartiet av flygplanet). Kantiga ytor kan ge liknande effekter. Det är ungefär samma sak som när man håller fingret framför en del av öppningen hos en vattenslang varvid vattnet sprutar mycket längre (eftersom det får högre fart). Genom en kombination av anfallsvinkel och lämplig form på vingens framkant kommer luften på vingens ovansida att ha högre hastighet än på undersidan. Detta har ingenting att göra med ETT.

Fel nummer två med ETT är att luftmolekylerna Vera och Kurt inte har stämt möte vid vingens bakkant. Holger Babinsky, professor i aerodynamik vid universitetet i Cambridge visar detta i ett mycket illustrerande vindtunnelförsök. Han har placerat en symmetrisk vingprofil med en viss anfallsvinkel (ca 10°) i en vindtunnel och gör luftströmningen synlig genom att spruta in rök"stålar" i vindtunneln. Genom att pulsa röken, dvs inte spruta in den kontinuerligt utan i korta pulser, kan man tydligt se strömningen runt vingen.

Bild 25. En rökpuls på väg mot vingen.

Bild 26. Pulsen har nått fram till vingens framkant.

Bild 27. Vi ser redan här att luftströmningen på vingens ovansida har betydligt högre fart än den på undersidan.

Bild 28. Och så fortsätter det på samma sätt.

Bildserien ovan gör en gång för alla slut på Equal Transit Time modellen. När luftmolekylerna skiljs åt vid vingens framkant (mellan de som går över och under vingen) upphör deras växelverkan och de två gasflödena utgör två separata flöden som inte kan kopplas ihop genom Bernoullis lag till ett flöde med lägre tryck på ovansidan.

Klicka här för att se en video (ca 15 min), där man bl a får se den videosekvens i slowmotion som bilderna 25-28 ovan är hämtade från. Videon finns på youtubekanalen "Fly with Magnar". Kanalen drivs av Magnar Nordal, som är flygkapten och flyginstruktör. Här finns många intressanta videor. Just i denna video håller jag dock inte med honom i allt. Det mest instressanta i videon är sekvensen från professor Babinskys vindtunnelförsök och att lyftkraftgenerering både kan förklaras med hjälp av energins och rörelsemängdens bevarande i ett slutet system.

Allt som sägs ovan kan kanske verka förvirrande men är inte förvånande, eftersom vetenskap inte handlar om absoluta sanningar utan om att hitta användbara modeller av verkligheten. Gravitation kan t ex både förklaras genom Newtons gravitationsteori (gravitationen är en avståndsberoende, attraktiv kraft som verkar mellan alla objekt som innehåller massa) och Einsteins allmänna relativitetsteori. Enligt den senare "kröker" objekt som innehåller massa den omkringliggande rum-tiden. Att en kastad boll inte rör sig längs en rät linje utan följer en parabel (en krökt bana) beror, enligt Einstein, inte på att bollen påverkas av en kraft (jordens gravitationskraft), utan av att rummet och tiden är krökta på grund av jordklotets massa. Bollen går egentligen rakt fram (opåverkad av krafter), men eftersom rum-tiden är krökt blir "rakt fram" (kortaste avståndet mellan två punkter) en parabel i detta fall (eller om vi skall vara riktigt noggranna, den tredimensionella projektionen av den fyrdimensionella banan i rum-tiden blir en parabel). Både Newtons och Einsteins teorier (som ju förklarar gravitationen på helt olika sätt) kan fullt tillfredsställande förklara fenomenet gravitation. Vid extrem gravitation (t ex massiva neutronstjärnor och svarta hål) ger emellertid Newtons teori helt fel förutsägelser. I sådana sammanhang måste man använda den allmänna relativitetsteorin, som således greppar över ett större område. Liknande gäller aerodynamik. Den förklaring till lyftkraft som getts ovan fungerar bra vid lägre hastigheter, men när man närmar sig ljudets hastighet blir luftens kompression en allt viktigare faktor, och det hela blir betydligt mer komplicerat.

Formell matematik leder ibland till lösningar som inte är förenliga med den fysikaliska verkligheten. När man inom geometrin använder Pythagoras sats för att beräkna längden av en sida i en rätvinklig triangel, får man kanske att kvadraten av sidans längd är 9. Sidans längd är då kvadratroten av 9, vilket är lika med ±3 (eftersom både (+3)2=9 och (-3)2=9). Dvs en av lösningarna har negativ längd (-3). Och eftersom längder i det universum vi känner till endast kan vara positiva, förkastar vi den negativa lösningen såsom varande ofysikalisk.
Ett annat exempel är Maxwells ekvation (som beskriver elektromagnetiska fält; ljus, radiovågor, gammastrålar etc). När man löser dessa ekvationer får man ibland två lösningar; en där orsaken kommer före verkan (den normala) och en där verkan kommer före orsaken. Dvs i det senare fallet inträffar först händelse A och senare, i framtiden, inträffar händelse B, som är orsaken till A. Den senare lösningen förkastas, eftersom den kausalitet vi observerar inom fysiken alltid är riktad framåt i tiden. Dvs vi utgår från att det som sker nu inte kan orsakas av händelser i framtiden (vi känner inte till någon mekanism genom vilket detta skulle kunna ske) utan att händelser som sker nu alltid orsakas av något som inträffat tidigare. Först orsaken, sedan effekten av orsaken. Aldrig tvärtom.
Man kan matematiskt visa att om en vinge skyfflar luft nedåt så uppstår ett undertryck på denna vinges ovansida. Denna lösning är förenlig med fysikens lagar och med observationer. Även om man formellt, matematiskt skulle kunna härleda det omvända förloppet så bevisar inte det att detta inträffar i den fysikaliska verkligheten. Vi känner i varje fall inte till någon fysikalisk mekanism genom vilken detta skulle kunna ske. Det tycks därför som att Newtons perspektiv (att lyftkraft skapas genom att skyffla luft nedåt) är det mest grundläggande och ligger närmast sanningen. Ja helt enkelt utgör sanningen. Alltså tycker jag att vi skall utgå från detta perspektiv i fortsättningen.

Klicka här för att komma till ett pedagogiskt exempel, som förhoppningsvis kan öka läsarens förståelse av det jag skriver i sista stycket.

 

Sammanfattning

När det gäller Bernoullis perspektiv, som således också är korrekt, är det viktigt att påpeka att påståendet att vingens större krökning på ovansidan tvingar luften att ha högre fart där än på undersidan, är totalt fel. För det första har många moderna vingar ungefär samma krökning på båda sidor (laminär profil) eller till och med större krökning på undersidan (superkritisk profil). För det andra handlar luftströmningen runt vingen om två helt separat flöden och att tillämpa Bernoullis lag på totala luftströmningen runt vingen är meningslöst och dessutom felaktigt. Det finns ingenting som säger att två närliggande luftmolekyler, där den ena går över vingen och den andra under, anländer till vingens bakkant samtidigt. Det finns ingen koppling mellan dessa två luftflöden och luften på vingens ovansida har ingen möjlighet att "veta" vad luftflödet på vingens undersida gör. Att luften runt en vinge rör sig med högre fart på ovansidan beror på aerodynamiska faktorer, som bl a påverkas av vingens form och anfallsvinkel.

En ytterligare faktor som kan bidraga till lyftkraften är Coandaeffekten. Denna gör att ett tunt luftlager närmast vingen följer vingytan både på ovan- och undersida (luften smetar så att säga fast vid vingens yta). Luften på den krökta ovansidan dras då nedåt medan luften på den plana undersidan rör sig i stort sett rakt fram. När luften på ovansidan dras nedåt orsakar detta en kraft som drar vingen uppåt (enligt Newtons tredje lag). Coandskiktet runt vingen är emellertid tunt varför coandaeffektens bidrag till lyftkraften rimligen måste vara nästan försumbart.

Coandaeffekten kan dock bidraga till lyftkraften på ett ytterligare sätt. En klassisk vingprofil är som sagts tidigare tämligen rak på undersiden och buktad (mer eller mindre) på ovansidan. Coandaeffekten gör att ett tunt luftlager närmast vingen följer vingytan både på ovan- och undersida. Men på grund av krökningen av ovansidan kommer större delen av luftmassan inte att ansluta till vingformen på samma sätt som "coandaskiktet" gör, utan den "släpper" och kommer därför att böja av mindre skarpt än vingovansidans krökning. Detta detta kan skapa en "ficka" med lägre tryck på vingens ovansida (mellan coandaskiktet och resten av luftflödet på ovansidan). Ju mer krökt ovansidan är, desta mer undertryck (till en viss gräns givetvis). Ungefär som luft vilken strömmar i ett smalt rör, vilket sedan vidgas. Vidgningen av röret ger en trycksänkning hos luften. Ju större diameter desto lägre tryck. Storleken på denna effekt varierar med vingprofil, hastighet, anfallsvinkel etc. Hur stort detta bidrag till lyftkraften är har jag ingen aning om. Förmodligen är det försumbart annat än möjligen för mycket speciella vingprofiler.

Bild 29. USA konstruerade i slutet av 1950-talet ett sexmotorigt bombplan, XB-70 Valkyrie (planet var tänkt att heta B-70 och "X" står för experimentplan), med en planerad operativ hastighet av mach 3 (tre gånger ljudets hastighet). Uppgiften skulle vara att bära kärnvapen in i Sovjet i händelse av en storkonflikt mellan USA och Sovjet. Detta var mitt under kalla kriget och när Sovjetledningen fick kännedom om Valkyrieprojektet blev man synnerligen nervös. Det skulle rimligtvis dröja många år innan Sovjet kunde få fram ett motmedel mot Valkyrie. Två XB-70 byggdes och gjorde ett antal provflygningar och under några av dessa uppnådde man mach 3.04 och topphöjden 74 000 ft. Kostnaderna skenade dock iväg (som vanligt) och kritikerna argumenterade att interkontinentala kärnvapenrobotar kunde utföra samma uppgift som XB-70, men till en betydligt lägre kostnad. Det hela slutade med att projektet skrotades.
Under utvecklingen av XB-70 upptäckte man en ytterligare möjlighet att ge ett flygplan lyftkraft, nämligen att låta planet "rida på" den kompressionsvåg som uppstår vid supersonisk fart (överljudshastighet). Detta kallas compression lift. När en vinge genererar lyftkraft enligt genomgången ovan, skapas dessvärre samtidigt drag, dvs luftmotstånd (läs mer om detta här). Ju mer lyftkraft desto mer drag. Kompressionsvågsgenererad lyftkraft ger inte någon ökning av drag, vilket ger en enorm fördel i form av dramatiskt ökad räckvidd alternativt högre fart. För att hålla kompressionsvågen på plats under planet fälldes yttre delen av vingarna ner under flygning (se bilden ovan). Så här ser vi ytterligare ett sätt att skapa lyftkraft hos ett flygplan. I detta fall fungerar det dock bara på dedicerade överljudsplan, som huvudsakligen flyger supersoniskt, dvs snabbare än ljudet. Normala stridsplan, som JAS Gripen, vilka har kapacitet att flyga mach 2, kan bara göra detta under några procent av flygtiden. Jag har inga siffror för JAS men en jämförbar F-16C kan flyga runt 9 minuter (utan yttre, fällbara extratankar, som drar ner farten och ökar bränsleförbrukningen) med maximalt motorpådrag, dvs med full efterbrännkammare. Dessutom misstänker jag att man måste flyga med hög supersonisk fart mellan mach 2 och mach 3 för att kompressionsvågsbaserad lyftkraft skall vara en betydande faktor.

Ovanstående utgör, trots att det blev ganska långt, endast en ytlig betraktelse över detta med lyftkraft. Vi ser här hur komplicerat allt blir när man försöker tränga in i ett område för att verkligen förstå. Inom teknik och naturvetenskap finns sällan enkla svar på våra frågor. Verkligheten är komplex och människan har att acceptera detta. Och detta är ju populärvetenskapens dilemma. Dvs att antingen göra stoffet så lättillgängligt så att det i praktiken blir mer fel än rätt (som den gängse, populära förklaringen av en vinges lyftkraft), eller med andra ord att man lurar läsaren, så att läsaren tror sig förstå, men det läsaren förstår är en så grov vrångbild av hur det verkligen förhåller sig, att det hade varit bättre att inte veta något alls. Eller också gör man ett ärligt försök att förklara, men då blir det ofta så komplext att få läsare orkar läsa texten. Stephen Hawking (1942-2018), den gravt handikappade, rullstolsbundne fysikern som ofta framträdde i olika tv-program, skrev för många år sedan (1988) en bok, A Brief History of Time. Boken såldes i över 10 miljoner exemplar och översattes till 35 språk och låg i många länder på bestsellerlistan i flera år. I boken försöker Hawking reda ut den moderna fysikens bild av vårt universum. Och han gör verkligen ett ärligt försök att ge en sann och korrekt bild. Jag minns att den fanns i travar i alla bokaffärer (på den tiden var Internetbokhandel ett okänt begrepp). Jag vill också minnas att den utnämndes till årets julklapp när den kom. Någon kallade lite elakt Hawkings bok för "Världens mest olästa bok". Dvs den finns i mer än tio miljoner bokhyllor men är läst i sin helhet av ett fåtal (vem vet, kanske denna artikel kommer att bli Internets mest olästa artikel?).

Slutsats: Även om man rent matematiskt/fysikaliskt kan förklara en vinges lyftkraft på båda de sätt som diskuterats ovan (Bernoulli respektive Newton) så återstår den definitiva frågan vilken som är hönan och vilken som är ägget, dvs vilken av dessa två faktorer (tryckskillnad eller skyfflande av luft nedåt) som är yttersta orsak och vilken som är verkan (en fysikalisk följd av den andra). Som jag ser saken så är det vingens skyfflande av luft nedåt som genererar undertrycket på vinges ovansida och inte tvärtom. Att lyftkraften formellt kan förklaras på båda sätten (undertryck på vingens ovansida respektive luft accelereras nedåt) beror på att dessa två förklaringar är matematiskt kopplade till varandra. Men rent fysikaliskt går kopplingen bara åt ena hållet, dvs skyfflandet av luft nedåt orsakar undertrycket på vingens ovansida. Punkt slut!

En vinges lyftkraft orsakas av att denna, på grund av sin form och anfallsvinkel ändrar luftens riktning så att denna får en komposant riktat nedåt, vilket enligt Newtons tredje lag gör att luften påverkar vingen med en kraft riktad uppåt.


Nedan ges länkar till de olika underartiklar som hör till denna artikel (länkarna finns också inbakade i texten ovan):

Här förklaras lyftkraft och sambandet mellan denna kraft och drag (luftmotstånd).
En matematisk härledning av Bernoullis ekvation.
Här förklaras de krafter som verkar och den teknik som används när flygplan svänger.
Lastfaktor och svängradie.
Ett flygplans stabilitet.
Lite propellerteori.
Propellereffekter och gyraleffekter.
Pitotrör och fartmätning.
Här förklaras begreppet HUD (Head Up Display).
En översiktlig och kortfattad artikel om Primary Flight Display plus lite om anfallsvinkel etc.
En utförlig genomgång av Primary Flight Display och mycket annat när det gäller flygning av jetliners (36 sidor).
Ett illustrerande exempel (handlar till stor del om SR-71).

 


[1] Enheten för kraft är newton och enheten för energi är newtonmeter (mekanisk energi definieras som kraft gånger väg dvs enheten blir newton gånger meter). Newtonmeter har fått namnet joule. Andra termen i Bernoullis lag, som kan betraktas som energi per volymsenhet, har således enheten Joule/m3=Nm/m3. Om vi förkortar med m får vi N/m2, som är enheten för kraft per areaenhet (newton/kvadratmeter), vilket är enheten för tryck (vars definition just är kraft per areaenhet). Dvs båda termerna i Bernoullis lag har samma enhet (första termen i Bernoullis lag är ju det statiska trycket medan andra termen är det dynamiska trycket, lika med farttrycket). Självklart måste båda termerna i vänsterledet av Bernoullis lag ha samma enhet — att addera olika typer av enheter är meningslöst (vad skulle t ex summan 3 kg plus 2° Celsius innebära? — en sådan operation vore ungefär lika meningsfull som att ta kvadratroten av en chokladpudding).

Tillbaka till Kristers Flygsida
Tillbaka till "Mer om makroevolution"